Increases and Decreases
Problem
A rectangle has length L, width W, and area A. If L is increased by 1/10 and A is decreased by 1/100, by what fraction does W change?
Solution
It may be tempting to say that if area decreases by 1/100 while length is increases by 1/10, then width must increase 1/100 + 1/10 = 11/100. But that doesn’t work.
Call the width of the changed triangle x.
Let’s see what’s going on:
- Area of original rectangle:
.
- Length of changed rectangle:
.
- Area of changed rectangle:
.
- But the area of the changed rectangle also equals the changed length times the changed width:
.
Set the last two expressions for the changed area A equal to each other and solve for x:
The changed width is 9/10 of the original width, so W decreases by 1/10.
Increase one dimension of a rectangle by 1/10, decrease the other by 1/10, and the result is a decrease in area of 1/100. Sound funny? Consider: When you increase the original length by 1/10, you are increasing the area by 1/10 of the original area. Then when you decrease the length by 1/10, you are decreasing the area by 1/10 of the enlarged area. So you’ve decreased by just a little more than you increased. Hence, the net change is a very small decrease.
The same sort of thing happens when you buy an item on sale for, say, 5% off and then you have to pay 5% tax on the sale price: The final price will be just a tiny bit less than the original price without tax.