# Finding an Angle’s Sine Given the Sine of Its Complement

*This post about finding an angle’s sine given the sine of its complement is part of a series of posts to help you prepare for the Advanced Algebra and Functions part of the Accuplacer test.*

## Question

Triangle *ABC *is a right triangle. Sin *B* = 3/8. What is the value of sin *A*?

## Solution

“Sin” is an abbreviation for *sine.* The sine of angle *A* in a right triangle means the ratio of the length of the side opposite angle A to the length of the hypotenuse (longest side).

You are asked to find an angle’s sine given the sine of its complement. A diagram should help. We can make some guesses about how triangle *ABC* looks. It’s conventional to name the right angle of a right triangle *C*, so right triangle *ABC *may look like this:

That the sine of angle *B* is 3/8 means the length of the side opposite angle *B *divided by the length of the hypotenuse is 3/8.

Those lengths may be 3 and 8 (or 30 and 80 or 0.3 and 0.8 or any combination in the proportion of 3/8).

The sine of angle *A *is equal to the length of the side opposite angle *A *divided by the length of the hypotenuse. What is the length of the side opposite angle *A*?

### Sidebar: **Pythagorean Theorem**.

The Pythagorean Theorem states that the square of the length of the hypotenuse of a right triangle equals the sum of the squares of the lengths of the legs.

In other words, using the labels in the triangle at left, where each side is named for the angle opposite it, .

### Back to the Question

We need to know *a*. Solve the Pythagorean equation above for a:

And we know that and . Then

Now the triangle looks like this:

The sine of *A* is the length of side opposite A divided by the length of the hypotenuse:

Read more about sine.

This question is similar to question number 20 in the sample questions for the Accuplacer Advanced Algebra and Functions test.

## Leave a Reply

Want to join the discussion?Feel free to contribute!